September 13, 2009

adj of matrix

2x2 generic matrix

The adjugate of the 2\times 2 matrix

\mathbf{A} = \begin{pmatrix} {{a}} & {{b}}\\ {{c}}  & {{d}} \end{pmatrix}

is

\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} \,\,\,{{d}} & \!\!{{-b}}\\ {{-c}} & {{a}} \end{pmatrix}.

[edit] 3x3 generic matrix

Consider the 3\times 3 matrix

\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.

Its adjugate is

\operatorname{adj}(\mathbf{A}) = \begin{pmatrix}  +\left| \begin{matrix} 5 & 6 \\ 8 & 9 \end{matrix} \right| & -\left| \begin{matrix} 2 & 3 \\ 8 & 9  \end{matrix} \right| & +\left| \begin{matrix} 2 & 3 \\ 5 & 6 \end{matrix} \right| \\  & & \\ -\left| \begin{matrix} 4 & 6 \\ 7 & 9 \end{matrix} \right| & +\left| \begin{matrix} 1 & 3 \\ 7 & 9 \end{matrix} \right| & -\left| \begin{matrix} 1 & 3 \\ 4 & 6 \end{matrix} \right| \\  & & \\ +\left| \begin{matrix} 4 & 5 \\ 7 & 8 \end{matrix} \right| & -\left| \begin{matrix}  1 & 2 \\ 7 & 8 \end{matrix} \right| & +\left| \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right| \end{pmatrix}

No comments:

Post a Comment